Patent Applications Filed:

4. Papish, E. T.; Vannucci, A. K. “Selective Hydrodeoxygenation of Aromatic Compounds” Patent Appl. No.: 17/060,455 (22) filed 10/1/20, Provisional Appl. No. 62/955,067  filed on 12/30/19.

3. Papish, E. T.; Paul, J. J.; Merino, E. J. “pH and Light Activated Anti-Cancer Drugs” provisional patent filed by the University of Alabama at USPTO in 10/14/2015, full patent application # 20160101177 A1 filed 4/14/2016.

Patents Granted:

2. Papish, E. T.; Delcamp, J. H. “Light Driven Metal-Pincer Photocatalysts for Carbon Dioxide Reduction to Carbon Monoxide” United States Patent 11,103,861, granted August 31, 2021, filed  September 15, 2017.

1. Papish, E. T.; Nieto, I. “Dihydroxybipyridine Complexes of Ruthenium and Iridium for Water Oxidation and Hydrogenation” United States Patent 9,527,066 B2, Dec. 27, 2016.  (Provisional application filed 8/30/11, patent application filed in 2/28/14.) Link to USPTO site for this patent.

PAPERS  (* denotes undergraduate coauthors)

Google scholar profile: H index = 22. Papers with 10 citations or more: 32.

The following publications are from work at the University of Alabama:

58. Sun, Y.*; Das, S.; Brown, S. R.; Blevins, E. R.*; Qu, F.; Ward, N. A.*; Gregory, S. A.*; Boudreaux, C. M.; Kim, Y.; Papish, E. T. “Ruthenium Pincer Complexes for Light Activated Toxicity: Lipophilic Groups Enhance Toxicity” J. Inorg. Biochem. 2022, submitted 7/20/22.

Preprint available here:


57. Boudreaux, C. M.; Nugegoda, D.; Yao, W.; Le Tri, N.; Frey, N. C.*; Li, Q.*; Qu, F.; Zeller, M.; Webster, C. E.; Delcamp, J. H.; Papish, E. T. “Low Valent Cobalt(I) CNC Pincer Complexes as Catalysts for Light Driven Carbon Dioxide Reduction” ACS Catalysis, 2022, 12, 8718−8728.

56. Das, S.; Nugegoda, D.; Yao, W.; Qu, F.; Figgins, M. T.*; Lamb, R. W.; Webster, C. E.; Delcamp, J. H.; Papish, E. T. “Sensitized and Self-Sensitized Photocatalytic Carbon Dioxide Reduction Under Visible Light with Ruthenium Catalysts Shows Enhancements with More Conjugated Pincer Ligands” Eur. J. Inorg. Chem., 2022, submitted 11/25/21. Accepted on 1/10/22. DOI: 10.1002/ejic.202101016

55. Papish, E. T.; Oladipupo, O. E. “Factors that Influence Singlet Oxygen Formation vs. Ligand Substitution for Light Activated Ruthenium Anticancer Compounds” Current Opinion in Chemical Biology 2022, 68, 102143.

54. Oladipupo, O.; Brown, S. R.; Lamb, R. W.; Gray, J. L.; Cameron, C. G.; DeRegnaucourt, A. R.*; Ward, N. A.*; Hall, J. F.*; Xu, Y.; Petersen, C. M.; Qu, F.; Shrestha, A. B.; Thompson, M. K.; Bonizzoni, M.; Webster, C. E.; McFarland, S. A.; Kim, Y.; Papish, E. T. “Light-responsive and protic ruthenium compounds bearing bathophenanthroline and dihydroxybipyridine ligands achieve nanomolar toxicity towards breast cancer cells” Photochem. and Photobiol. 2022, 98, 102-116. For special issue in memoriam of Prof. Karen Brewer.

53. Papish, E. T.; Das, S.; Silprakob, W.; Boudreaux, C. M.; Manafe, S. Y.  “Proton Responsive and Hydrogen Bonding Ligands in Organometallic Chemistry” invited book chapter for Comprehensive Organometallic Chemistry IV, 2022, accepted 8/15/21, published 12/30/21.


52. Qu, F.; Lamb, R. W.; Cameron, C. G.; Park, S.;  Oladipupo, O.; Gray, J. L.; Xu, Y.; Cole, H. D.; Bonizzoni, M.; Kim, Y.; McFarland, S. A.; Webster, C. E.; Papish, E. T. “Singlet oxygen formation vs. photodissociation for light-responsive protic ruthenium anticancer compounds: The oxygenated substituent determines which pathway dominates” Inorg. Chem. 2021, 60, 2138–2148.  DOI:

51. Yao, W.; DeRegnaucourt, A. R.*; Shrewsbury, E. D.*; Loadholt, K.* H.; Silprakob, W.; Brewster, T. P.; Papish, E. T. “Reinvestigating Catalytic Alcohol Dehydrogenation with an Iridium Dihydroxybipyridine Catalyst” Organometallics 2020393656–3662. DOI: 10.1021/acs.organomet.0c00398

50. Shirley, H.; Figgins, M. T.*; Boudreaux, C. M.; Liyanage, N. P.; Lamb, R. W.; Webster, C. E.; Papish, E. T.; Delcamp, J. H. “Impact of the Dissolved Anion on the Electrocatalytic Reduction of COto CO with Ruthenium CNC Pincer Complexes” ChemCatChem 2020, 124879 – 4885. Special invited issue on “Pincer Chemistry and Catalysis.”  DOI: 10.1002/cctc.202000742

49. Das, S.; Nugegoda, D.; Qu, F.; Boudreaux, C. M.; Burrow, P. E.; Figgins, M. T.*; Lamb, R. W.; Webster, C. E.; Delcamp, J. H.; Papish, E. T. “Structure Function Relationships in Ruthenium Carbon Dioxide Reduction Catalysts with CNC Pincers Containing Donor Groups.” Eur. J. Inorg. Chem. 2020,  2709-2717. Special invited issue on “Pincer Chemistry and Catalysis,” published online 6/17/20. DOI: 10.1002/ejic.202000444

48. Yao, W.; Das. S.; DeLucia, N. A.; Qu, F.; Boudreaux, C. M.; Vannucci, A. K.; Papish, E. T. “Determining the Catalyst Properties that Lead to High Activity and Selectivity for Catalytic Hydrodeoxygenation with Ruthenium Pincer Complexes” Organometallics 2020, 39, 662-669.

47. Park, S.; Gray, J. L.; Altman, S. D.; Hairston, A. R.; Beswick, B. T.; Kim, Y.; Papish, E. T. “Cellular Uptake of Protic Ruthenium Complexes is Influenced by pH Dependent Passive Diffusion and Energy Dependent Efflux” J. Inorg. Biochem2020, 203, 110922.

46. Papish, E. T. “Water Oxidation with Coordination Complex Catalysts Using Group 7 and 8 Metals” invited book chapter for Comprehensive Coordination Chemistry III, 2021, 715-741.

45. Das, S.; Rodrigues, R. R.; Lamb, R. W.; Qu, F.; Reinheimer, E.; Boudreaux, C. M.; Webster, C. E.; Delcamp, J. H.; Papish, E. T. “Highly Active Ruthenium CNC Pincer Photocatalysts for Visible Light Driven Carbon Dioxide Reduction” Inorg. Chem. 2019, 58, 8012-8020. DOI: 10.1021/acs.inorgchem.9b00791TOC graphic showing catalyst structure

44. Rodrigues, R. R.; Boudreaux, C. M.; Papish, E. T.; Delcamp, J. H. “The Photocatalytic Reduction of COto CO and Formate: Do Reaction Conditions or Ruthenium Catalysts Control Product Selectivity?”ACS Applied Energy Materials, invited forum issue on “New Chemistry to Advance the Quest for Sustainable Solar Fuels,” 2019, 2, 37-46. DOI: 10.1021/acsaem.8b01560.

TOC graphic showing two pathways for catalysis

43. Qu, F.; Martinez, K.; Arcidiacono, A. M.; Park, S.; Zeller, M.; Schmehl, R. H.; Paul, J. J.; Kim, Y.; Papish, E. T. “Sterically Demanding Methoxy and Methyl Groups in Ruthenium Complexes Lead to Enhanced Quantum Yields for Blue Light Triggered Photodissociation” Dalton Trans. 2018, 47, 15685-93. DOI: 10.1039/c8dt03295e.

TOC graphic showing the effects of sterics and electronics

Image chosen for inside back cover of Dalton Trans.:  Back cover graphic showing how sterics and electronics impact toxicity

42. Lisic, E. C.; Rand, V. G.; Ngo, L.; Kent, P.; Rice, J.; Gerlach, D.; Papish, E. T.; Jiang, X., “Cu(II) Propionyl-Thiazole Thiosemicarbazone Complexes: Crystal Structure, Inhibition of Human Topoisomerase IIα, and Activity against Breast Cancer Cells.” Open Journal of Medicinal Chemistry 2018, 8, 30-46

41. Burks, D. B.; Davis, S.; Lamb, R. W.; Liu, X.; Rodrigues, R. R.; Liyanage, N. P.; Sun, Y.; Webster, C. E.;* Delcamp, J. H.;* Papish, E. T.* “Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction” Chem. Commun. 2018, 54, 3819-3822.

TOC graphic showing that catalysts can be switched on or off

Image chosen for back cover of Chem. Commun.:

back cover image showing catalysts can be switched on or off

40. Burks, D. B.; Vasiliu, M.; Dixon, D. A.;* Papish, E. T.* “Thermodynamic Acidity Studies of 6,6′-dihydroxybipyridine: A Combined Experimental and Computational Approach” J. Phys. Chem. A. 2018, 122, 2221-2231.

TOC graphic showing that pH impacts the structures formed

39. Boudreaux, C. M.; Liyanage, N. P.; Shirley, H.; Siek, S.; Gerlach, D. L.; Qu, F.; Delcamp, J. H.;* Papish, E. T.*  “Ruthenium(II) complexes of pyridinol and N-heterocyclic carbene derived pincers as robust catalysts for selective carbon dioxide reduction” Chem. Commun. 2017, 53, 11217-11220.

TOC graphic showing catalyst structure for CO2 reduction

38. Gerlach, D. L.; Siek, S.; Burks, D. B.; Tesh, J. M.; Thompson, C. R.; Vasquez, R. M.; White, N. J.; Zeller, M.; Grotjahn, D. B.;* Papish, E. T.* “Ruthenium (II) and Iridium (III) Complexes of N-Heterocyclic Carbene and Pyridinol Derived Bidentate Chelates: Synthesis, Characterization, and Reactivity.” Inorganica Chimica Acta, 2017, 466, 442-450. graphic showing catalyst structure

37. Qu, F.; Park, S.; Martinez, K.; Gray, J.L.; Shazna Thowfeik, F.; Lundeen, J. A.; Kuhn, A. E.; Charboneau, D. J.; Gerlach, D. L.; Lockart, M. M.; Law, J. A.; Jernigan, K. L.; Chambers, N.; Zeller, M.; Piro, N. A.; Kassel, W. S.; Schmehl, R. H.; Paul, J. J.;* Merino, E. J.;* Kim, Y.;* Papish E. T.* “Ruthenium Complexes are pH-Activated Metallo Prodrugs (pHAMPs) with Light Triggered Selective Toxicity Towards Cancer Cells” Inorganic Chemistry, 2017, 56, 7519-7532.

TOC graphic showing the structure of anticancer compounds

36. Siek, S.; Burks, D. B.; Gerlach, D. L.; Liang, G.; Tesh, J. M.; Thompson, C. R.; Qu, F.; Shankwitz, J. E.; Vasquez, R. M.; Chambers, N. S.; Szulczewski, G. J.; Grotjahn, D. B.; Webster, C. E.; Papish, E. T. “Iridium and Ruthenium Complexes of NHC and Pyridinol Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal” Organometallics, 2017, 36, 1091-1106.

TOC graphic showing the catalysts for CO2 hydrogenation

35. Siek, S.; Dixon, N. A.; Papish, E. T. “Electrochemical Reduction of Ttz Copper(II) Complexes in the Presence and Absence of Protons: Processes Relevant to Enzymatic Nitrite Reduction. (TtzR,R’ = tris(3-R, 5-R’-1, 2, 4-triazolyl)borate)”  Inorganica Chimica Acta, 2017, 459, 80-86,

TOC graphic showing electrochemical behavior of Cu compounds

34. Gray, J. L.; Gerlach, D. L.; Papish, E. T. “Crystal structure of [(1,4,7,10-tetraazacyclododecane)copper(II)] perchlorate” Acta Cryst. Section E: Cryst. Commun., 2017, E73, 31-34.

33. Meany, J. E.; Gerlach, D. L.; Papish, E. T.; Woski, S. A.  “4′-Bromo-2′,5′-dimethoxy-2,5-dioxo-[1,1′-biphenyl]-3,4-dicarbonitrile [BrHBQ(CN)2] benzene hemisolvate”Acta Cryst. Section E: Cryst. Commun.,  2016, E72, 600-603. DOI: 10.1107/S2056989016005120.

32. Siek, S.; Dixon, N. A.; Kumar, M.; Kraus, J. S.;* Wells, K. R.;* Rowe, B. W.;* Kelley, S. P.; Zeller, M.; Yap, G. P. A.; Papish, E. T. “The Synthesis of Biomimetic Zinc Complexes for CO2 Activation and the Influence of Steric Changes in the Ttz Ligands (Ttz = Tris(triazolyl)borate)Eur. J. Inorg. Chem, 2016, 2495-2507, in Scorpionates special issue.  DOI: 10.1002/ejic.201500819

Zn compounds for CO2 activation

31. Serpas, L.;* Baum, R. R.;* McGhee, A.;* Nieto, I.; Jernigan, K. L.;*Zeller, M.; Ferrence, G. M.; Tierney, D. L.; Papish, E. T.  “‘‘Scorpionate-like” complexes that are held together by hydrogen bonds: Crystallographic and spectroscopic studies of (3-NH(t-butyl)-5-methylpyrazole)nMX2 (M = Zn, Ni, Co, Mn; n = 3, 4; X = Cl, Br) Polyhedron, 2016, 114, 62-71, in Undergraduate Research special issue. DOI: 10.1016/j.poly.2015.10.003Zinc compounds with hydrogen bonds

30. Gerlach, D. L.; Nieto, I.; Herbst-Gervasoni, C. J.; Ferrence, G. M.; Zeller, M.; Papish, E. T.  “Crystal structures of bis- and hexakis-[copper(II)(6,6′-dihydroxybipyridine)] nitrate
coordination complexesActa. Cryst.  2015, E71, 1447-1453. doi:10.1107/S205698901502037X

Crystal structure for TOC graphic

29.  Gerlach, D. L.; Bhagan, S.; Cruce, A. A.; Burks, D. B.; Nieto, I.; Truong, H. T.;* Kelley, S. P.; Herbst-Gervasoni, C. J.; Jernigan, K. L.;* Bowman, M. K.; Pan, S.; Zeller, M.; Papish, E. T. “Studies of the Pathways Open to Copper Water Oxidation Catalysts Containing Proximal Hydroxy Groups During Basic ElectrocatalysisInorganic Chemistry, 2014, 53 (24), 12689–12698. DOI: 10.1021/ic501018a.

TOC graphic for Cu compounds for water oxidation

28. Marelius, D. C.; Bhagan, S.; Charboneau, D. J.; Schroeder, K. M.; Kamdar, J. M.; McGettigan, A. R.; Freeman, B. J.; Moore, C. E.; Rheingold, A. L.; Cooksy, A. L.; Smith, D. K.; Paul, J. J.; Papish, E. T.; Grotjahn, D. B. “How Do Proximal Hydroxy or Methoxy Groups on the Bidentate Ligand Affect (terpy)Ru(N,N)X Water Oxidation Catalysts? Synthesis, Characterization, and Reactivity at Acidic and Near-neutral pH” European Journal of Inorganic Chemistry, 2014, 676-689.  Invited for special issue on water oxidation catalysis.  DOI: 10.1002/ejic.201300826.Ru water oxidation catalysts

27. Hufziger,K. T.; Thowfeik, F. S.; Charboneau, D. J.; Nieto,I.; Dougherty,W. G.; Kassel, W.S; Dudley,T. J.; Merino,E. J.; Papish,E. T.; Paul, J. J. “Ruthenium Dihydroxybipyridine Complexes are Tumor Activated Prodrugs Due to Low pH and Blue Light Induced Ligand Release” Journal of Inorganic Biochemistry, 2014, 130, 103-111. DOI: 10.1016/j.jinorgbio.2013.10.008.

Ru anticancer compounds

The following publications are from work at Drexel University:

26.  Papish, E. T.; Dixon, N. A.; Kumar, M. “Biomimetic Chemistry with Tris(triazolyl)borate Ligands: Unique Structures and Reactivity via Interactions with the Remote Nitrogen” Invited review article for Structure and Bonding 2014, 160, 115-150. DOI: 10.1007/430_2012_86.

TOC graphic showing scorpionates

25. Dixon, N. A.; McQuarters, A. B.; Kraus, J. S.;* Soffer, J.; Lehnert, N.; Schweitzer-Stenner, R.; Papish, E. T. “Dramatic Tuning of Ligand Donor Properties in (Ttz)CuCO through Remote Binding of H+ (Ttz = tris(triazolyl)borate” Chem. Commun., 2013, 49, 5571-5573.

TOC graphic showing Cu compounds for CH activation and how CO stretch changes with protonation state

24. Kumar, M.; DePasquale, J.; White, N. J.; Zeller, M.; Papish, E. T. “Ruthenium Complexes of Triazole Based Scorpionate Ligands can Hydrogenate Substrates Under Base Free Conditions” Organometallics, 2013, 32, 2135-2144.  DOI: 10.1021/om301260j.

Ru scorpionates for hydrogenation catalysts

23. Kumar, M.; DePasquale, J.; Zeller, M.; Papish, E. T. “A Bulky Bis N-Heterocyclic Carbene Complex of Iron with Coordination Number of Six: [CpFe(CO)(CH2(ImtBu)2]I  (where ImtBu = 3-tert-butyl-1H-imidazol-1-yl-2(3H)-ylidene)”  Inorganic Chemistry Communications, 2013, 32, 55-58.

Iron NHC complexes

22. DePasquale, J; Nieto, I.; Reuther, L. E.;* Herbst-Gervasoni, C. J.; Paul, J. J.; Mochalin, V.; Zeller, M.; Thomas, C. M.; Addison, A. W.; Papish, E. T. “Iridium Dihydroxybiypyridine Complexes show that Ligand Deprotonation Dramatically Speeds Rates of Catalytic Water Oxidation” Inorg. Chem., 2013, 52 (16), 9175-9183, chosen for cover artwork,

Ir water oxidation catalysts

Front cover image showing Ir water oxidation catalysts are activated by pH increases

21. DePasquale, J.; Kumar, M., Zeller, M.; Papish, E. T. “Variations on an NHC Theme: Which Features are Essential for Catalysis of Transfer Hydrogenation with Ruthenium Complexes?” Organometallics, 2013, 32, 966-979.

transfer hydrogenation catalysts - which features are essential?

20. DePasquale, J.; White, N. J.; Ennis, E. J.; Zeller, M.; Foley, J. P.; Papish, E. T. “Synthesis of Chiral N-Heterocyclic Carbene (NHC) Ligand Precursors and Formation of Ruthenium(II) Complexes for Transfer Hydrogenation Catalysts”  PolyhedronInvited for Michelle Millar special memorial issue, 2013, 58, 162-170. DOI:

Catalysts with asymmetric centers

19. Kumar, M.; Dixon, N. A.; Merkle, A.C.; Papish, E. T.; Lehnert, N.; Zeller, M., “Hydrotris(triazolyl)borate Complexes as Functional Models for Cu Nitrite Reductase: The Electronic Influence of Distal Nitrogens.”   Inorg. Chem2012, 7004-7006. DOI: 10.1021/ic300160c.

Copper complexes for nitrite reduction

    ‡ Author Contributions The first two authors contributed equally.

18. Oseback, S. N.;* Shim, S. W.;* Kumar, M.; Greer, S. M.; Gardner, S. R.;* Lemar, K. M.;* DeGregory, P. R.;* Papish, E. T.; Tierney, D. L.; Zeller, M.; Yap, G. P. A. “Crowded Bis Ligand Complexes of TtzPh,Me with First Row Transition Metals Rearrange due to Ligand Field Effects:  Structural and Electronic Characterization (TtzPh,Me = tris(3-phenyl-5-methyl-1,2,4 triazolyl)borate)” Dalton. Trans. 2012, 41, 2774-2787. DOI: 10.1039/c2dt12029a.

   ‡ Author Contributions The first three authors contributed equally.

Ni complexes change color with geometry

17. Nieto, I.; Livings, M. S.; Sacci, J. B. III; Reuther, L. E.;* Zeller, M.; Papish, E. T.  “Transfer hydrogenation in Water via a Ruthenium Catalyst with OH Groups near the Metal Center on a Bipy Scaffold.” Organometallics 2011, 30, 6339–6342DOI: 10.1021/om200638p

TOC graphic for new dhbp catalysts showing metal ligand bifunctional mechanism

16.  Kumar, M.; Papish, E. T.; Zeller, M.; Hunter, A. D. “Zinc Complexes of TtzR,Me with O and S Donors Reveal Differences Between Tp and Ttz Ligands: Acid Stability and Binding to H or an Additional Metal (TtzR,Me = tris(3-R-5-methyl-1,2,4-triazolyl)borate; R = Ph, tBu)” Dalton Trans201140, 7517-7533.  DOI: 10.1039/C1DT10429B

Zn complexes form a coordination polymer

15.  Marts, A. R.; Greer, S. M.; Whitehead, D. R.; Woodruff, T. M.; Breece, R. M.; Shim, S. W.;* Oseback, S. N.;* Papish, E. T.; Jacobsen, F. E.; Cohen, S. M.;  Tierney, D. L. “Dual Mode EPR Studies of a Kramers ion: High-Spin Co(II) in 4-, 5- and 6-Coordination” Applied Magnetic Resonance 2011, published online April 20, 2011.

14.  Kumar, M.; Papish, E. T.; Zeller, M. “Ethyl[tris(3-tert-butyl-5-methylpyrazol-1-yl)hydridoborato]zinc(II)” Acta Crystallographica Section C 2010C66, m197-m200.

13.  Bongiovanni, J. L.;* Rowe, B. W.;* Fadden, P. T.;* Taylor, M. T.;* Wells, K. R.;* Kumar, M.; Papish, E. T.; Yap, G. P. A.; Zeller, M. “Synthesis, Structural Studies and Solubility Properties of Zinc(II), Nickel(II) and Copper(II) Complexes of Bulky Tris(triazolyl)borate Ligands” Inorganica Chimica Acta 2010363, 2163-2170. DOI: 10.1016/j.ica.2010.03.010

12.  Kumar, M.; Papish, E. T.; Zeller, M.; Hunter, A. D. “New alkylzinc complexes with bulky tris(triazolyl)borate ligands: Surprising water stability and reactivity” Dalton Trans2010, 39, 59-61.  DOI: 10.1039/b918328k

Zinc complexes for TOC graphic

11.  Papish, E. T. “A Circuitous Route to the Right Balance of Teaching and Research” In Tips on Getting an Academic Position; Pei, Z. J., Ed.; Raleigh, N.C., 2009; pp 16-23.  This book chapter on mentoring future professors is available online or in paperback form. Also this can be emailed to you upon request.

10. Gardner, S. R.;* Papish, E. T.; Monillas, W. H.; Yap, G. P. A. “Tris(triazolyl)borate Ligands of Intermediate Steric Bulk for the Synthesis of  Biomimetic Structures with Hydrogen Bonding and Solubility in Hydrophilic Solvents” Journal of Inorganic Biochemistry 2008102, 2179-2183.

9. Papish, E. T.; Donahue, T. M.;* Wells, K. R.;* Yap, G. P. A. “How Are Tris(triazolyl)borate Ligands Electronically Different From Tris(pyrazolyl)borate Ligands? A Study of (TtztBu,Me)CuCO [TtztBu,Me = tris(3-t-butyl-5-methyl-1,2,4-triazolyl)borate].” Dalton Trans. 2008, 2923-2925.  DOI: 10.1039/b804951c

Copper CO complex for TOC graphic


The following papers are from work at Salisbury University, a primarily undergraduate institution:

8. Jernigan, F. E.;* Sieracki, N. A.;* Taylor, M. T.;* Jenkins, A. S.;* Engel, S. E.; Rowe, B. W.;* Jové, F. A.; Yap, G. P. A.; Papish, E. T.; Ferrence, G. M. “Sterically Bulky Tris(triazolyl)borate Ligands as Water-Soluble Analogues of Tris(pyrazolyl)borate” Inorg. Chem.  200746, 360-362.  DOI: 10.1021/ic061828a

Zinc and cobalt complexes

7. Jernigan, F. E.;* Jové, F. A.; Papish, E. T.; Yap, G. P. A. “Bis[tris(3-isopropylpyrazolyl)methane sulfonate]manganese(II)” Acta Cryst. E622006, m3172-m3173.

6. Papish, Elizabeth T.; Taylor, Michael T.;* Jernigan, Finith E.;* Rodig, Michael J.;* Shawhan, Robert R.;* Yap, Glenn P. A.; Jové, Fernando A. “Synthesis of Zinc, Copper, Nickel, Cobalt and Iron Complexes Using Tris(pyrazolyl)methane Sulfonate Ligands:  A Structural Model for N,N,O Binding in Metalloenzymes” Inorganic Chemistry 200645, 2242-2250.  DOI: 10.1021/ic051579a


Zinc complexes with the Tpms ligand

The following papers are from Papish’s work as a graduate student, undergraduate student, and REU student:

5. Mahajan, Devinder; Papish, Elizabeth T.; Pandya, Kaumudi.  “Sonolysis Induced Decomposition of Metal Carbonyls: Kinetics and Product Characterization.” Ultrasonics Sonochemistry 200411, 385-392.

4. Tang, LiHao; Papish, Elizabeth T.; Abramo, Graham P.; Baik, Mu-Hyun; Norton, Jack R.; Rappé, Anthony. “Kinetics and Thermodynamics of H• Transfer From (h5-C5R5)Cr(CO)3H to Styrene and Methyl Methacrylate”.  J. Am. Chem. Soc. 2003125, 10093-10102.  DOI: 10.1021/ja034927l

3. Papish, Elizabeth T.; Magee, Matthew P.; Norton, Jack R.  Protonation of Transition Metal Hydrides to Give Dihydrogen Complexes: Mechanistic Implications and Catalytic Applications”.  InRecent Advances in Hydride Chemistry; Poli, R., Ed.; Elsevier: Switzerland, 2001; pp 39-74.

2. Papish, Elizabeth T.; Rix, Francis C.; Spetseris, Nikos; Norton, Jack R.; Williams, Robert D. “Protonation of CpW(CO)2(PMe3)H: Is the Metal or the Hydride the Kinetic Site? J. Am. Chem. Soc. 2000122, 12235-12242.  DOI: 10.1021/ja002395s

1. Wu, Min; Papish, Elizabeth T.; Begley, Tadhg P. “Mechanistic studies on thiaminase I. Identification of the product of thiamin degradation in the absence of the nucleophilic cosubstrate.” Bioorg. Chem. 2000,  28,  45-48.

Department of Chemistry